Cart (Loading....) | Create Account
Close category search window
 

Uncovering nonlinear dynamics-the case study of sea clutter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haykin, Simon ; McMaster Univ., Hamilton, Ont., Canada ; Bakker, R. ; Currie, B.W.

Nonlinear dynamics are basic to the characterization of many physical phenomena encountered in practice. Typically, we are given a time series of some observable(s) and the requirement is to uncover the underlying dynamics responsible for generating the time series. This problem becomes particularly challenging when the process and measurement equations of the dynamics are both nonlinear and noisy. Such a problem is exemplified by the case study of sea clutter which refers to radar backscatter from an ocean surface. After setting the stage for this case study, the paper presents tutorial reviews of: (1) the classical models of sea clutter based on the compound K distribution and (2) the application of chaos theory to sea clutter. Experimental results are presented that cast doubts on chaos as a possible nonlinear dynamical mechanism for the generation of sea clutter. Most importantly, experimental results show that on timescales smaller than a few seconds, sea clutter is very well described as a complex autoregressive process of order four or five. On larger timescales, gravity or swell waves cause this process to be modulated in both amplitude and frequency. It is shown that the amount of frequency modulation is correlated with the nonlinearity of the clutter signal. The dynamical model is an important step forward from the classical statistical approaches, but it is in its early stages of development

Published in:

Proceedings of the IEEE  (Volume:90 ,  Issue: 5 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.