By Topic

Two stage principal component analysis of color

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lenz, R. ; Media Group, Linkoping Univ., Norrkoping, Sweden

We introduce a two-stage analysis of color spectra. In the first processing stage, correlation with the first eigenvector of a spectral database is used to measure the intensity of a color spectrum. In the second step, a perspective projection is used to map the color spectrum to the hyperspace of spectra with first eigenvector coefficient equal to unity. The location in this hyperspace describes the chromaticity of the color spectrum. In this new projection space, a second basis of eigenvectors is computed and the projected spectrum is described by the expansion in this chromaticity basis. This description is possible since the space of color spectra is conical. We compare this two-stage process with traditional principal component analysis and find that the results of the new structure are closer to the structure of traditional chromaticity descriptors than traditional principal component analysis

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 6 )