By Topic

Low-temperature-grown 1.55 μm GaInAs/AlInAs quantum wells for optical switching: MBE growth and optical response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
H. Kuenzel ; Heinrich-Hertz-Inst. fur Nachrichtentech. Berlin GmbH, Germany ; K. Biermann ; J. Boettcher ; P. Harde
more authors

The crystalline and carrier trapping properties of 1.55 μm emitting beryllium doped GaInAs/AlInAs multiple quantum wells, grown by MBE at low temperatures, were investigated with respect to their application to ultrahigh-speed optical switching devices. As-grown and in-situ annealed materials were compared. While the former material shows only limited substitutional incorporation of Be acceptors due to excess As incorporation blocking Ga-sites, annealed material shows cluster formation of excess As. Femtosecond pump-probe experiments indicate a nonlinear transmission change, which decays due to carrier trapping with a time constant of 230 fs. Experiments with pairs of ultrashort pulses separated by 1.5 ps demonstrate the capability of fast modulation of transmission associated with very small accumulation effects.

Published in:

Indium Phosphide and Related Materials Conference, 2002. IPRM. 14th

Date of Conference:

2002