By Topic

First experiment in sun-synchronous exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
D. Wettergreen ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; B. Dias ; B. Shamah ; J. Teza
more authors

Sun-synchronous exploration is accomplished by reasoning about sunlight: where the Sun is in the sky, where and when shadows will fall, and how much power can be obtained through various courses of action. In July 2001 a solar-powered rover, named Hyperion, completed two sun-synchronous exploration experiments in the Canadian high arctic (75°N). Using knowledge of orbital mechanics, local terrain, and expected power consumption, Hyperion planned a sun-synchronous route to visit designated sites while obtaining the necessary solar power for continuous 24-hour operation. Hyperion executed its plan and returned to its starting location with batteries fully charged after traveling more than 6 kilometers in barren, Mars-analog terrain. We describe the concept of sun-synchronous exploration. We overview the design of the robot Hyperion and the software system that enables it to operate sun-synchronously. We then discuss results from analysis of our first experiment in sun-synchronous exploration and conclude with observations.

Published in:

Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on  (Volume:4 )

Date of Conference: