By Topic

Model and analysis of gate leakage current in ultrathin nitrided oxide MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, J. ; Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL, USA ; Bosman, Gijs ; Green, K.R. ; Ladwig, D.

An analytical model of the gate leakage current in ultrathin gate nitrided oxide MOSFETs is presented. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semi-empirical gate leakage current formulation. The tunneling-in and tunneling-out current are calculated by modifying the expression of the direct tunneling current model of BSIM. For a microscopic interpretation of the ITAT process, resonant tunneling (RT) through the oxide barrier containing potential wells associated with the localized states is proposed. We employ a quantum-mechanical model to treat electronic transitions within the trap potential well. The ITAT current model is then quantitatively consistent with the summation of the resonant tunneling current components of resonant energy levels. The 1/f noise observed in the gate leakage current implies the existence of slow processes with long relaxation times in the oxide barrier. In order to verify the proposed ITAT current model, an accurate method for determining the device parameters is necessary. The oxide thickness and the interface trap density of the gate oxide in the 20-30 Å thickness range are evaluated by the quasi-static capacitance-voltage (C-V) method, dealing especially with quantum-mechanical and polysilicon effects

Published in:

Electron Devices, IEEE Transactions on  (Volume:49 ,  Issue: 7 )