Cart (Loading....) | Create Account
Close category search window
 

On the importance of combining wavelet-based nonlinear approximation with coding strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cohen, A. ; Lab. d''Anal. Numerique, Univ. Pierre et Marie Curie, Paris, France ; Daubechies, I. ; Guleryuz, O.G. ; Orchard, M.T.

This paper provides a mathematical analysis of transform compression in its relationship to linear and nonlinear approximation theory. Contrasting linear and nonlinear approximation spaces, we show that there are interesting classes of functions/random processes which are much more compactly represented by wavelet-based nonlinear approximation. These classes include locally smooth signals that have singularities, and provide a model for many signals encountered in practice, in particular for images. However, we also show that nonlinear approximation results do not always translate to efficient compress on strategies in a rate-distortion sense. Based on this observation, we construct compression techniques and formulate the family of functions/stochastic processes for which they provide efficient descriptions in a rate-distortion sense. We show that this family invariably leads to Besov spaces, yielding a natural relationship among Besov smoothness, linear/nonlinear approximation order, and compression performance in a rate-distortion sense. The designed compression techniques show similarities to modern high-performance transform codecs, allowing us to establish relevant rate-distortion estimates and identify performance limits

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 7 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.