Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

An efficient optimization-based technique to generate posynomial performance models for analog integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daems, W. ; ESAT-MICAS, Katholieke Univ., Leuven, Belgium ; Gielen, G. ; Sansen, Willy

This paper presents an new direct-fitting method to generate posynomial response surface models with arbitrary constant exponents for linear and nonlinear performance parameters of analog integrated circuits. Posynomial models enable the use of efficient geometric programming techniques for circuit sizing and optimization. The automatic generation avoids the time-consuming nature and inaccuracies of handcrafted analytic model generation. The technique is based on the fitting of posynomial model templates to numerical data from SPICE simulations. Attention is paid to estimating the relative 'goodness-of-fit' of the generated models. Experimental results illustrate the significantly better accuracy of the new approach

Published in:

Design Automation Conference, 2002. Proceedings. 39th

Date of Conference: