By Topic

A quantitative investigation of hydrogen in the metal-oxide-silicon system using NRA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. Briere ; Hahn-Meitner-Inst., Berlin, West Germany ; D. Braunig

The present state of development in the application of resonant nuclear reaction analysis to the direct measurement of hydrogen concentration profiles throughout the metal-oxide-silicon system is presented. Detection limits of less than 1018 cm-3 (1012 cm-2) as well as a depth resolution of better than 10 nm are obtained. Limitations of the technique in the study of changes in the hydrogen profiles caused by ex-situ irradiation are discussed. It is shown that the method is sensitive enough to provide the first clear measurements of the hydrogen distribution in bulk SiO2 (500-1000 ppma). Evidence is provided which indicates that the dominating source of hydrogen for the bulk SiO2 may not be the oxidation process; rather, the surface layer formed through exposure to air, between the oxidation and evaporation processes, may, in some cases, determine the bulk level. Some initial data are presented, directly relating the hydrogen content in MOS structures and the measured changes in interface and oxide charges following 60Co irradiation

Published in:

IEEE Transactions on Nuclear Science  (Volume:37 ,  Issue: 6 )