Cart (Loading....) | Create Account
Close category search window
 

Vibration-induced droplet atomization heat transfer cell for high-heat flux applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heffington, S.N. ; George W. Woodruff Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Black, W.Z. ; Glezer, A.

This paper describes a unique two-phase cooling method that includes a closed heat transfer cell, similar to a thermosyphon that can be used to cool microelectronic packages. The cooling method is based upon a Vibration-Induced Droplet Atomization, or VIDA, process that can generate small liquid droplets inside a closed cell and propel them onto a heated surface. The VIDA technique involves the violent break-up of a liquid film into a shower of droplets by vibrating a piezoelectric actuator and accelerating the liquid film at resonant conditions. The droplets continually coat the surface with a thin liquid film, which evaporates on the heated surface, and the vapor is condensed on the internal surfaces of the heat transfer cell as well as the liquid working fluid. The condensed liquid is returned via gravity to the piezoelectric actuator where it is again atomized. A VIDA heat transfer cell 50 mm in diameter and 20 mm thick was constructed. Test data described in this study include the heat transfer characteristics and cooling capabilities for a small-scale cell that is suitable for cooling a desktop microprocessor during the burn-in portion of the manufacturing process. The VIDA process produces droplets of relatively uniform diameter, and the droplets have sufficient momentum to reach the remotely located heated source. Heat fluxes as high as 200 W/cm2 have been measured when a chilled water heat exchanger is used as the external heat removal device.

Published in:

Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.