By Topic

Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ran Wei ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Dries, J.C. ; Hongsheng Wang ; Lange, M.L.
more authors

We demonstrate long-wavelength (/spl lambda/ = 1.3 and 1.5 μm) high-speed (10 Gb/s) InGaAs-InP separate absorption-grading-and-multiplication region avalanche photodiodes (SAGM-APDs) employing a double diffused floating guard ring (FGR) structure to eliminate edge breakdown. The simple /spl ges/ 60-GHz gain-bandwidth product double diffused FGR structure was optimized using theoretical and experimental studies. The APD excess noise factor was measured, and suggests that dead-length effects must be considered in designing high bandwidth devices with thin multiplication layers.

Published in:

Photonics Technology Letters, IEEE  (Volume:14 ,  Issue: 7 )