Cart (Loading....) | Create Account
Close category search window
 

Fixed-alternate routing and wavelength conversion in wavelength-routed optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramamurthy, R. ; Dept. of Comput. Sci., California Univ., Davis, CA, USA ; Mukherjee, B.

Consider an optical network which employs wavelength-routing crossconnects that enable the establishment of wavelength-division-multiplexed (WDM) connections between node pairs. In such a network, when there is no wavelength conversion, a connection is constrained to be on the same wavelength channel along its route. Alternate routing can improve the blocking performance of such a network by providing multiple possible paths between node pairs. Wavelength conversion can also improve the blocking performance of such a network by allowing a connection to use different wavelengths along its route. This work proposes an approximate analytical model that incorporates alternate routing and sparse wavelength conversion. We perform simulation studies of the relationships between alternate routing and wavelength conversion on three representative network topologies. We demonstrate that alternate routing generally provides significant benefits, and that it is important to design alternate routes between node pairs in an optimized fashion to exploit the connectivity of the network topology. The empirical results also indicate that fixed-alternate routing with a small number of alternate routes asymptotically approaches adaptive routing in blocking performance

Published in:

Networking, IEEE/ACM Transactions on  (Volume:10 ,  Issue: 3 )

Date of Publication:

Jun 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.