By Topic

An immunity-based technique to characterize intrusions in computer networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Dasgupta ; Comput. Sci. Div., Univ. of Memphis, TN, USA ; F. Gonzalez

This paper presents a technique inspired by the negative selection mechanism of the immune system that can detect foreign patterns in the complement (nonself) space. In particular, the novel pattern detectors (in the complement space) are evolved using a genetic search, which could differentiate varying degrees of abnormality in network traffic. The paper demonstrates the usefulness of such a technique to detect a wide variety of intrusive activities on networked computers. We also used a positive characterization method based on a nearest-neighbor classification. Experiments are performed using intrusion detection data sets and tested for validation. Some results are reported along with analysis and concluding remarks

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:6 ,  Issue: 3 )