By Topic

Convex Bayes decision theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stirling, W.C. ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA ; Morrell, D.R.

The basic concepts of Levi's epistemic utility theory and credal convexity are presented. Epistemic utility, in addition to penalizing error as is done with traditional Bayesian decision methodology, permits a unit of informational value to be distributed among the hypotheses of a decision problem. Convex Bayes decision theory retains the conditioning structure of probability-based inference, but addresses many of the objections to Bayesian inference through relaxation of the requirement for numerically definite probabilities. The result is a decision methodology that stresses avoiding errors and seeks decisions that are likely to be highly informative as well as true. By relaxing the mandatory requirement for unique decisions and point estimates in all cases, decision and estimation criteria that do not demand more than is possible to obtain from the data and permit a natural man-in-the-loop interface are obtained. Applications are provided to illustrate the theory

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:21 ,  Issue: 1 )