By Topic

Real-time concurrency control in a multiprocessor environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tei-Wei Kuo ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jun Wu ; Hsin-Chia Hsih

Although many high-performance computer systems are now multiprocessor-based, little work has been done in real-time concurrency control of transaction executions in a multiprocessor environment. Real-time concurrency control protocols designed for uniprocessor or distributed environments may not fit the needs of multiprocessor-based real-time database systems because of a lower concurrency degree of transaction executions and a larger number of priority inversions. This paper proposes the concept of a priority cap to bound the maximum number of priority inversions in multiprocessor-based real-time database systems to meet transaction deadlines. We also explore the concept of two-version data to increase the system concurrency level and to explore the abundant computing resources of multiprocessor computer systems. The capability of the proposed methodology is evaluated in a multiprocessor real-time database system under different workloads, database sizes and processor configurations. It is shown that the benefits of the priority cap in reducing the blocking time of urgent transactions are far greater than the losses involved in committing less urgent transactions. The idea of two-version data also greatly improves the system performance because of a much higher concurrency degree in the system

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 6 )