Cart (Loading....) | Create Account
Close category search window
 

Efficient parallel algorithms for solvent accessible surface area of proteins

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Futamura, N. ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Aluru, S. ; Ranjan, D. ; Hariharan, B.

We present faster sequential and parallel algorithms for computing the solvent accessible surface area (ASA) of protein molecules. The ASA is computed by finding the exposed surface areas of the spheres obtained by increasing the van der Waals radii of the atoms with the van der Waals radius of the solvent. Using domain specific knowledge, we show that the number of sphere intersections is only O(n), where n is the number of atoms in the protein molecule. For computing sphere intersections, we present hash-based algorithms that run in O(n) expected sequential time and O(n/p) expected parallel time and sort-based algorithms that run in worst-case O(n log n) sequential time and O(n log n/p) parallel time. These are significant improvements over previously known algorithms which take O(n2) time sequentially and O(n2/p) time in parallel. We present a Monte Carlo algorithm for computing the solvent accessible surface area. The basic idea is to generate points uniformly at random on the surface of spheres obtained by increasing the van der Waals radii of the atoms with the van der Waals radius of the solvent molecule and to test the points for accessibility. We also provide error bounds as a function of the sample size. Experimental verification of the algorithms is carried out using an IBM SP-2

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 6 )

Date of Publication:

Jun 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.