By Topic

Cytological breast fine needle aspirate images analysis with a genetic fuzzy finite state machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Estevez ; Centro Superior de Informatica, Univ. de La Laguna, Spain ; S. Alayon ; L. Moreno ; R. Aguilar
more authors

A system based on a fuzzy finite state machine (FFSM) has been developed for evaluating cytological features derived directly from a digital scan of breast fine needle aspirate (FNA) slides. The system uses computer vision techniques to analyse cell nuclei in order to extract determinate features and to try to find, by means of genetic algorithms (GA), the ideal FFSM that is able to classify them. This application to breast cancer diagnosis uses the characteristics of individual cells to discriminate benign from malignant breast lumps. In our system, we try to find a texture measurement that can be included in the feature set in order to improve the classifier performance: a complexity measurement of the structural pattern is used to discriminate between benign and malign cells. With this measure and the technique described, we have observed that not only is the absolute complexity of the image relevant, but also the way in which the complexity is distributed at different scales.

Published in:

Computer-Based Medical Systems, 2002. (CBMS 2002). Proceedings of the 15th IEEE Symposium on

Date of Conference: