By Topic

Induction motor fault diagnosis based on neuropredictors and wavelet signal processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyusung Kim ; Dept. of Mech. Eng., Texas A&M Univ., College Station, TX, USA ; Parlos, A.G.

Early detection and diagnosis of incipient faults is desirable for online condition assessment, product quality assurance and improved operational efficiency of induction motors running off power supply mains. In this paper, a model-based fault diagnosis system is developed for induction motors, using recurrent dynamic neural networks for transient response prediction and multi-resolution signal processing for nonstationary signal feature extraction. In addition to nameplate information required for the initial setup, the proposed diagnosis system uses measured motor terminal currents and voltages, and motor speed. The effectiveness of the diagnosis system is demonstrated through staged motor faults of electrical and mechanical origin. The developed system is scalable to different power ratings and it has been successfully demonstrated with data from 2.2-, 373-, and 597-kW induction motors. Incremental tuning is used to adapt the diagnosis system during commissioning on a new motor, significantly reducing the system development time

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:7 ,  Issue: 2 )