By Topic

Estimating stationary dipoles from MEG/EEG data contaminated with spatially and temporally correlated background noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Munck, J.C. ; MEG Center, Vrije Univ., Amsterdam, Netherlands ; Huizenga, H.M. ; Waldorp, L.J. ; Heethaar, R.M.

The stationary dipole model for the inverse problem of magnetoencephalographic (MEG) and electroencephalographic (EEG) data is extended by including spatio-temporal correlations of the background noise. For that purpose, the spatio-temporal covariances are described as a Kronkecker product of a spatial and a temporal covariance matrix. The maximum likelihood method is used to estimate this Kronecker product from a series of trials of MEG/EEG data. A simulation study shows that the inclusion of the background noise generally improves the dipole estimate substantially. When the frequency of the source time functions, however, coincides with the frequency contents of the covariance function, the dipole estimate worsens when the temporal correlations are included. The inclusion of spatial correlations always improves the estimates

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 7 )