By Topic

Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Yeredor ; Dept. of Electr. Eng.-Syst., Tel Aviv Univ., Israel

Approximate joint diagonalization of a set of matrices is an essential tool in many blind source separation (BSS) algorithms. A common measure of the attained diagonalization of the set is the weighted least-squares (WLS) criterion. However, most well-known algorithms are restricted to finding an orthogonal diagonalizing matrix, relying on a whitening phase for the nonorthogonal factor. Often, such an approach implies unbalanced weighting, which can result in degraded performance. We propose an iterative alternating-directions algorithm for minimizing the WLS criterion with respect to a general (not necessarily orthogonal) diagonalizing matrix. Under some mild assumptions, we prove weak convergence in the sense that the norm of parameters update is guaranteed to fall below any arbitrarily small threshold within a finite number of iterations. We distinguish between Hermitian and symmetrical problems. Using BSS simulations results, we demonstrate the improvement in estimating the mixing matrix, resulting from the relaxation of the orthogonality restriction

Published in:

IEEE Transactions on Signal Processing  (Volume:50 ,  Issue: 7 )