We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Spectral imaging system analytical model for subpixel object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kerekes, J.P. ; Lincoln Lab., MIT, Lexington, MA, USA ; Baum, J.E.

Data from multispectral and hyperspectral imaging systems have been used in many applications including land cover classification, surface characterization, material identification, and spatially unresolved object detection. While these optical spectral imaging systems have provided useful data, their design and utility could be further enhanced by better understanding the sensitivities and relative roles of various system attributes; in particular, when application data product accuracy is used as a metric. To study system parameters in the context of land cover classification, an end-to-end remote sensing system modeling approach was previously developed. In this paper, we extend this model to subpixel object detection applications by including a linear mixing model for an unresolved object in a background and using object detection algorithms and probability of detection (PD) versus false alarm (PFA) curves to characterize performance. Validations with results obtained from airborne hyperspectral data show good agreement between model predictions and the measured data. Examples are presented which show the utility of the modeling approach in understanding the relative importance of various system parameters and the sensitivity of PD versus PFA curves to changes in the system for a subpixel road detection scenario

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 5 )