By Topic

A field based, self-excited compulsator power supply for a 9 MJ railgun demonstrator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
W. A. Walls ; Center for Electromech., Texas Univ., Austin, TX, USA ; S. B. Pratap ; W. G. Brinkman ; K. G. Cook
more authors

Fabrication efforts have begun on a field-based compulsator for firing 9 MJ projectiles from a railgun launcher. The machine is designed to store 200 MJ kinetic energy and fire a salvo of nine rounds in three minutes at velocities between 2.5 and 4.0 km/s. Prime power required to meet this firing schedule is 1.865 kW, and will be supplied by a gas turbine engine. It is also possible to fire a burst of two shots in rapid succession, if desired. Operating speed of the machine is 8250 r/min and it has design ratings of 3.2 MA peak current and 20 GW peak power into a 9 MJ railgun load. A two-pole configuration is used for pulse-length considerations, and selectivity passive compensation is used to produced a relatively flat pulse and limit peak projectile acceleration to about 980000 m/s2. Other distinguishing features include an air core magnetic circuit, separate rotor armature windings for self-excitation and railgun firing, ambient temperature field coils, and excitation field magnetic energy recovery capability. A detailed description of the machine as designed, and its auxiliary and control systems, is provided. Fabrication and assembly methods are reviewed, and the current status of the project is discussed

Published in:

IEEE Transactions on Magnetics  (Volume:27 ,  Issue: 1 )