By Topic

An efficient low-power binding algorithm in high-level synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yoonseo Choi ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Taewhan Kim

We propose an efficient binding algorithm for power optimization in high-level synthesis. In prior work, it has been shown that several binding problems for low-power can be formulated as multi-commodity flow problems (due to an iterative execution of data flow graph) and be solved optimally. However, since the multi-commodity flow problem is NP-hard, the application is limited to a class of small sized problems. To overcome the limitation, we address the problem of how we can effectively make use of the property of efficient flow computations in a network so that it is extensively applicable to practical designs while producing close-to-optimal results. To this end, we propose an efficient two-step algorithm, which (1) determines a feasible binding solution by partially utilizing the computation steps for finding a maximum flow of minimum cost in a network and then (2) refines it iteratively. Experiments with a set of benchmark examples show that the proposed algorithm saves the run time significantly while maintaining close-to-optimal bindings in most practical designs.

Published in:

Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on  (Volume:4 )

Date of Conference: