Cart (Loading....) | Create Account
Close category search window
 

Optimal design and parallel implementation of FIR filters with variable magnitude and fractional-delay responses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tian-Bo Deng ; Dept. of Inf. Sci., Toho Univ., Chiba, Japan

This paper proposes a weighted least-squares (WLS) method for designing variable one-dimensional (1-D) FIR digital filters with simultaneously variable magnitude and variable non-integer phase-delay responses. First, the coefficients of a variable FIR filter are represented as the two-dimensional (2-D) polynomials of a pair of spectral parameters; one is for tuning the magnitude response, and the other is for varying its non-integer phase-delay response. Then the optimal coefficients of the 2-D polynomials are found by minimizing the total weighted squared error of the variable frequency response. Finally, it is shown that the resulting variable FIR filter can be implemented in a parallel form, which is suitable for high-speed signal processing.

Published in:

Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on  (Volume:1 )

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.