Cart (Loading....) | Create Account
Close category search window
 

Multiscale deformable model segmentation and statistical shape analysis using medial descriptions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Joshi, S. ; Med. Image Display & Anal. Group, North Carolina Univ., Chapel Hill, NC, USA ; Pizer, S. ; Fletcher, P.T. ; Yushkevich, P.
more authors

This paper presents a multiscale framework based on a medial representation for the segmentation and shape characterization of anatomical objects in medical imagery. The segmentation procedure is based on a Bayesian deformable templates methodology in which the prior information about the geometry and shape of anatomical objects is incorporated via the construction of exemplary templates. The anatomical variability is accommodated in the Bayesian framework by defining probabilistic transformations on these templates. The transformations, thus, defined are parameterized directly in terms of natural shape operations, such as growth and bending, and their locations. A preliminary validation study of the segmentation procedure is presented. We also present a novel statistical shape analysis approach based on the medial descriptions that examines shape via separate intuitive categories, such as global variability at the coarse scale and localized variability at the fine scale. We show that the method can be used to statistically describe shape variability in intuitive terms such as growing and bending.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:21 ,  Issue: 5 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.