By Topic

Session-based admission control: a mechanism for peak load management of commercial Web sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Cherkasova ; Hewlett-Packard Labs., Palo Alto, CA, USA ; P. Phaal

We consider a new, session-based workload for measuring web server performance. We define a session as a sequence of client's individual requests. Using a simulation model, we show that an overloaded web server can experience a severe loss of throughput measured as a number of completed sessions compared against the server throughput measured in requests per second. Moreover, statistical analysis of completed sessions reveals that the overloaded web server discriminates against longer sessions. For e-commerce retail sites, longer sessions are typically the ones that would result in purchases, so they are precisely the ones for which the companies want to guarantee completion. To improve Web QoS for commercial Web servers, we introduce a session-based admission control (SBAC) to prevent a web server from becoming overloaded and to ensure that longer sessions can be completed. We show that a Web server augmented with the admission control mechanism is able to provide a fair guarantee of completion, for any accepted session, independent of a session length. This provides a predictable and controllable platform for web applications and is a critical requirement for any e-business. Additionally, we propose two new adaptive admission control strategies, hybrid and predictive, aiming to optimize the performance of SBAC mechanism. These new adaptive strategies are based on a self-tunable admission control function, which adjusts itself accordingly to variations in traffic loads

Published in:

IEEE Transactions on Computers  (Volume:51 ,  Issue: 6 )