By Topic

Spectral fuzzy classification: an application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Del Amo, A. ; Fac. of Math., Univ. Complutense de Madrid, Spain ; Montero, J. ; Fernandez, A. ; Lopez, M.
more authors

Geographical information (including remotely sensed data) is usually imprecise, meaning that the boundaries between different phenomena are fuzzy. In fact, many classes in nature show internal gradual differences in species, health, age, moisture, as well other factors. If our classification model does not acknowledge that those classes are heterogeneous, and crisp classes are artificially imposed, a final careful analysis should always search for the consequences of such an unrealistic assumption. We consider the unsupervised algorithm presented by A. del Amo et al. (2000), and its application to a real image in Sevilla province (south Spain). Results are compared with those obtained from the ERDAS ISO-DATA classification program on the same image, showing the accuracy of our fuzzy approach. As a conclusion, it is pointed out that whenever real classes are natural fuzzy classes, with gradual transition between classes, then its fuzzy representation will be more easily understood, and therefore accepted by users

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 1 )