By Topic

Stability and spectral behavior of grating-controlled actively mode-locked lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. J. Lowery ; Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia ; N. Onodera ; R. S. Tucker

Amplitude, timing, and wavelength instabilities in a semiconductor mode-locked laser are studied experimentally and by using an accurate numerical model. It is shown that these instabilities can occur when the RF drive frequency is tuned to give a minimum average pulsewidth. It is shown that experimental measurement techniques, such as sampling and averaging, can mask these instabilities. Using this numerical model, it is shown that the wavelength instability is associated with the amplitude and timing instabilities and that the large broadening of the optical spectrum observed experimentally is caused by a cyclic wavelength instability

Published in:

IEEE Journal of Quantum Electronics  (Volume:27 ,  Issue: 11 )