By Topic

Curvature-augmented tensor voting for shape inference from noisy 3D data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Keung Tang ; Comput. Sci. Dept., Hong Kong Univ. of Sci. & Technol., China ; G. Medioni

Improves the basic tensor voting formalism to infer the sign and direction of principal curvatures at each input site from noisy 3D data. Unlike most previous approaches, no local surface fitting, partial derivative computation, nor oriented normal vector recovery is performed in our method. These approaches are known to be noise-sensitive, since accurate partial derivative information is often required, which is usually unavailable from real data. Also, unlike approaches that detect signs of Gaussian curvature, we can handle points with zero Gaussian curvature uniformly, without first localizing them in a separate process. The tensor-voting curvature estimation is non-iterative, does not require initialization, and is robust to a considerable amount of outlier noise, as its effect is reduced by collecting a large number of tensor votes. Qualitative and quantitative results on synthetic and real complex data are presented

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 6 )