By Topic

Imaged document text retrieval without OCR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tan, C.L. ; Sch. of Comput., Univ. of Singapore, Kent Ridge, Singapore ; Weihua Huang ; Zhaohui Yu ; Yi Xu

We propose a method for text retrieval from document images without the use of OCR. Documents are segmented into character objects. Image features, namely the vertical traverse density (VTD) and horizontal traverse density (HTD), are extracted. An n-gram-based document vector is constructed for each document based on these features. Text similarity between documents is then measured by calculating the dot product of the document vectors. Testing with seven corpora of imaged textual documents in English and Chinese as well as images from the UW1 (University of Washington 1) database confirms the validity of the proposed method

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 6 )