By Topic

Face recognition using line edge map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongsheng Gao ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; M. K. H. Leung

The automatic recognition of human faces presents a significant challenge to the pattern recognition research community. Typically, human faces are very similar in structure with minor differences from person to person. They are actually within one class of "human face". Furthermore, lighting conditions change, while facial expressions and pose variations further complicate the face recognition task as one of the difficult problems in pattern analysis. This paper proposes a novel concept: namely, that faces can be recognized using a line edge map (LEM). The LEM, a compact face feature, is generated for face coding and recognition. A thorough investigation of the proposed concept is conducted which covers all aspects of human face recognition, i.e. face recognition under (1) controlled/ideal conditions and size variations, (2) varying lighting conditions, (3) varying facial expressions, and (4) varying pose. The system performance is also compared with the eigenface method, one of the best face recognition techniques, and with reported experimental results of other methods. A face pre-filtering technique is proposed to speed up the search process. It is a very encouraging to find that the proposed face recognition technique has performed better than the eigenface method in most of the comparison experiments. This research demonstrates that the LEM, together with the proposed generic line-segment Hausdorff distance measure, provides a new method for face coding and recognition

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 6 )