Cart (Loading....) | Create Account
Close category search window
 

Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Martinez, Aleix M. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA

The classical way of attempting to solve the face (or object) recognition problem is by using large and representative data sets. In many applications, though, only one sample per class is available to the system. In this contribution, we describe a probabilistic approach that is able to compensate for imprecisely localized, partially occluded, and expression-variant faces even when only one single training sample per class is available to the system. To solve the localization problem, we find the subspace (within the feature space, e.g., eigenspace) that represents this error for each of the training images. To resolve the occlusion problem, each face is divided into k local regions which are analyzed in isolation. In contrast with other approaches where a simple voting space is used, we present a probabilistic method that analyzes how "good" a local match is. To make the recognition system less sensitive to the differences between the facial expression displayed on the training and the testing images, we weight the results obtained on each local area on the basis of how much of this local area is affected by the expression displayed on the current test image

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 6 )

Date of Publication:

Jun 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.