By Topic

Density-based multiscale data condensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mitra, P. ; Machine Intelligence Unit, Indian Stat. Inst., Calcutta, India ; Murthy, C.A. ; Pal, S.K.

A problem gaining interest in pattern recognition applied to data mining is that of selecting a small representative subset from a very large data set. In this article, a nonparametric data reduction scheme is suggested. It attempts to represent the density underlying the data. The algorithm selects representative points in a multiscale fashion which is novel from existing density-based approaches. The accuracy of representation by the condensed set is measured in terms of the error in density estimates of the original and reduced sets. Experimental studies on several real life data sets show that the multiscale approach is superior to several related condensation methods both in terms of condensation ratio and estimation error. The condensed set obtained was also experimentally shown to be effective for some important data mining tasks like classification, clustering, and rule generation on large data sets. Moreover, it is empirically found that the algorithm is efficient in terms of sample complexity

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 6 )