By Topic

Analysis and design of controllers for AQM routers supporting TCP flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hollot, C.V. ; Dept. of Electr. & Comput. Eng., Massachusetts Univ., Amherst, MA, USA ; Misra, V. ; Towsley, D. ; Gong, W.

In active queue management (AQM), core routers signal transmission control protocol (TCP) sources with the objective of managing queue utilization and delay. It is essentially a feedback control problem. Based on a recently developed dynamic model of TCP congestion-avoidance mode, this paper does three things: 1) it relates key network parameters such as the number of TCP sessions, link capacity and round-trip time to the underlying feedback control problem; 2) it analyzes the present de facto AQM standard: random early detection (RED) and determines that REDs queue-averaging is not beneficial; and 3) it recommends alternative AQM schemes which amount to classical proportional and proportional-integral control. We illustrate our results using ns simulations and demonstrate the practical impact of proportional-integral control on managing queue utilization and delay

Published in:

Automatic Control, IEEE Transactions on  (Volume:47 ,  Issue: 6 )