By Topic

Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Imada, M. ; Dept. of Electron. Sci. & Eng., Kyoto Univ., Japan ; Noda, S. ; Chutinan, A. ; Mochizuki, M.
more authors

This paper describes a theoretical and experimental analysis of the channel drop filter using a single defect formed near the two-dimensional (2-D) photonic crystal slab waveguide. First, we calculate the transmission spectrum of a 2-D photonic crystal waveguide and show that high transmittance for a wide wavelength range (∼60 nm) is obtained in the 1.55-μm region. We also show that a defect state having a wavelength within the high transmission wavelength range can be formed in the photonic bandgap by introducing a single defect of appropriate radius. Next, we fabricate several devices and show that the emission wavelength from each defect can be tuned by changing the defect radius. The measured tuning characteristics coincide well with the calculated results. From the near-field pattern of the device, we estimate the emission efficiency of the present device at almost a few tens percent. We clarify the structural condition in order to obtain the maximum output efficiency and show that tuning of emission wavelength while maintaining high output efficiency is possible by selecting appropriate defect radius and position. Based on these results, we propose an ultrasmall channel drop filter for a wavelength-division-multiplex optical communication system.

Published in:

Lightwave Technology, Journal of  (Volume:20 ,  Issue: 5 )