By Topic

A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Attaviriyanupap, P. ; Div. of Syst. & Inf. Eng., Hokkaido Univ., Sapporo, Japan ; Kita, H. ; Tanaka, Eiichi ; Hasegawa, J.

Dynamic economic dispatch (DED) is one of the main functions of power generation operation and control. It determines the optimal settings of generator units with predicted load demand over a certain period of time. The objective is to operate an electric power system most economically while the system is operating within its security limits. This paper proposes a new hybrid methodology for solving DED. The proposed method is developed,in such a way that a simple evolutionary programming (EP) is applied as a based level search, which can give a good direction to the optimal global region, and a local search sequential quadratic programming (SQP) is used as a fine tuning to determine the optimal solution at the final. A ten-unit test system with nonsmooth fuel cost function is used to illustrate the effectiveness of the proposed method compared with those obtained from EP and SQP alone

Published in:

Power Systems, IEEE Transactions on  (Volume:17 ,  Issue: 2 )