By Topic

Optimal power flow by enhanced genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. G. Bakirtzis ; Dept. of Electr. Eng., Aristotle Univ., Thessaloniki, Greece ; P. N. Biskas ; C. E. Zoumas ; V. Petridis

This paper presents an enhanced genetic algorithm (EGA) for the solution of the optimal power flow (OPF) with both continuous and discrete control variables. The continuous control variables modeled are unit active power outputs and generator-bus voltage magnitudes, while the discrete ones are transformer-tap settings and switchable shunt devices. A number of functional operating constraints, such as branch flow limits, load bus voltage magnitude limits, and generator reactive capabilities, are included as penalties in the GA fitness function (FF). Advanced and problem-specific operators are introduced in order to enhance the algorithm's efficiency and accuracy. Numerical results on two test systems are presented and compared with results of other approaches

Published in:

IEEE Transactions on Power Systems  (Volume:17 ,  Issue: 2 )