By Topic

Efficient multiway graph partitioning method for fault section estimation in large-scale power networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bi, T. ; Dept. of Electr. & Electron. Eng., Hong Kong Univ., China ; Ni, Y. ; Shen, C.M. ; Wu, F.F.

Fault section estimation (FSE) of large-scale power networks can be implemented effectively by the distributed artificial intelligence (AI) technique. In this paper, an efficient multiway graph partitioning method is proposed to partition the large-scale power networks into the desired number of connected subnetworks with balanced working burdens in performing FSE. The number of elements at the frontier of each subnetwork is also minimised in the method. The suggested method consists of three basic steps: forming the weighted depth-first-search tree of the studied power network; partitioning the network into connected, balanced subnetworks and minimising the number of the frontier nodes of the subnetworks through iterations so as to reduce the interaction of FSE in adjacent subnetworks. The relevant mathematical model and partitioning procedure are presented. The method has been implemented with the sparse storage technique and tested in the IEEE 14-bus, 30-bus and 118-bus systems, respectively. Computer simulation results show that the proposed multiway graph partitioning method is effective for the large-scale power system FSE using the distributed AI technique

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:149 ,  Issue: 3 )