By Topic

A comparison of active queue management algorithms using the OPNET Modeler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chengyu Zhu ; Sch. of Inf. Technol. & Eng., Ottawa Univ., Ont., Canada ; Yang, O.W.W. ; Aweya, J. ; Ouellette, M.
more authors

A number of active queue management algorithms for TCP/IP networks such as random early detection (RED), stabilized RED (SRED), BLUE, and dynamic RED (DRED) have been proposed in the past few years. This article presents a comparative study of these algorithms using simulations. The evaluation is done using the OPNET Modeler, which provides a convenient and easy-to-use platform for simulating large-scale networks. The performance metrics used in the study are queue size, packet drop probability, and packet loss rate. The study shows that, among the four algorithms, SIZED and DRED are more effective at stabilizing the queue size and controlling the packet loss rate while maintaining high link utilization. The benefits of stabilized queues in a network are high resource utilization, bounded delays, more certain buffer provisioning, and,traffic-load-independent network performance in terms of traffic intensity and number of TCP connections.

Published in:

Communications Magazine, IEEE  (Volume:40 ,  Issue: 6 )