By Topic

An electrostatic microactuator system for application in high-speed jets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chunchieh Huang ; Center for Wireless Integrated Microsystems, Michigan Univ., Ann Arbor, MI, USA ; Christophorou, C. ; Najafi, K. ; Naguib, A.
more authors

The development of an electrostatic microactuator system for the study and control of high-speed jet flows is presented. The electrostatic actuator is 1.3 mm wide, 14 μm thick and has a head that overhangs a glass substrate, intruding into the flow by 200 μm. The actuator has been fabricated using a bulk-silicon dissolved-wafer process to increase device thickness for increased stiffness in the flow direction. Characterization of the new actuators demonstrated their ability to oscillate with amplitudes of up to 70 μm peak-to-peak at resonant frequencies of 5 and 14 kHz. This is a very large motion at such high frequencies when compared to existing macro or micro mechanical actuators. The full actuator system was mounted around the exit of a high-speed jet using several sector-shaped PC boards. This enabled detailed examination of the ability of the actuators to withstand the flow environment and generate substantial flow disturbances. The results showed that the microactuators functioned properly up to jet speeds of 300 m/s while generating disturbances in the shear layer surrounding the jet comparable to those produced by other macro-scale methodologies

Published in:

Microelectromechanical Systems, Journal of  (Volume:11 ,  Issue: 3 )