By Topic

Interrogation of extrinsic Fabry-Perot interferometric sensors using arrayed waveguide grating devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Niewczas, P. ; Strathclyde Univ., Glasgow, UK ; Dziuda, L. ; Fusiek, G. ; Willshire, A.J.
more authors

In this paper we present details of a solid state interrogation system based on a 16-channel arrayed waveguide grating (AWG) for interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors. The sensing element is configured in a reflecting mode and is illuminated by a broad-band light source through an optical fiber. The spectrum of light reflected from the sensor is analyzed using an AWG device acting as a coarse spectrometer. Using measurement points from the AWG channels, the original spectrum of the sensing element is reconstructed by a means of curve fitting. This allows sufficient information for the position of the reflection peak (or inverted peak) to be uniquely determined and the value of a measurement quantity obtained. In addition to the theoretical simulations of the proposed measurement system, we provide details of the laboratory evaluation using an EFPI strain sensor.

Published in:

Instrumentation and Measurement Technology Conference, 2002. IMTC/2002. Proceedings of the 19th IEEE  (Volume:2 )

Date of Conference: