By Topic

Evolutionary learning of fuzzy logic controllers and their adaptation through perpetual evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Rajapakse ; Electr. Eng. Program, Sirindom Int. Inst. of Technol., Pathumthani, Thailand ; K. Furuta ; S. Kondo

This paper presents an adaptive control architecture, where evolutionary learning is applied for initial learning and real-time tuning of a fuzzy logic controller. The initial learning phase involves identification of an artificial neural network model of the process and subsequent development of a fuzzy controller with parameters obtained via a genetic search. The neural network model is utilized for evaluating trial fuzzy controllers during the genetic search. The proposed adaptive mechanism is based on the concept of perpetual evolution, where parameters of the fuzzy controller are updated at each time step with solutions extracted from a continuously evolving population of trials. There are two mechanisms that accommodate the real-time changes in the control task and/or the process into the continuous genetic search: a scheme that dynamically modifies the fitness evaluation criteria of the genetic algorithm, and an online learning of the neural network model used for evaluating the trial controllers. The potential of using evolutionary learning for real-time adaptive control is illustrated through computer simulations, where the proposed technique is applied to a chemical process control problem

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:10 ,  Issue: 3 )