System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Fuzzy logic approaches to structure preserving dimensionality reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pal, N.R. ; Electron. & Commun. Sci. Unit, Indian Stat. Inst., Calcutta, India ; Eluri, V.K. ; Mandal, G.K.

Sammon's (1969) nonlinear projection method is computationally prohibitive for large data sets, and it cannot project new data points. We propose a low-cost fuzzy rule-based implementation of Sammon's method for structure preserving dimensionality reduction. This method uses a sample and applies Sammon's method to project it. The input data points are then augmented by the corresponding projected (output) data points. The augmented data set thus obtained is clustered with the fuzzy c-means (FCM) clustering algorithm. Each cluster is then translated into a fuzzy rule to approximate the Sammon's nonlinear projection scheme. We consider both Mamdani-Assilian and Takagi-Sugeno models for this. Different schemes of parameter estimation are considered. The proposed schemes are applied on several data sets and are found to be quite effective to project new points, i.e., such systems have good predictability

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:10 ,  Issue: 3 )