By Topic

Extending ventilation duration estimations approach from adult to neonatal intensive care patients using artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanling Tong ; Sch. of Inf. Technol. & Eng., Ottawa Univ., Ont., Canada ; M. Frize ; R. Walker

In earlier work, the research group successfully used artificial neural networks (ANNs) to estimate ventilation duration for adult intensive care unit (ICU) patients. The ANNs performed well in terms of correct classification rate (CCR) and average squared error (ASE) classifying the outcome into two classes: whether patients were ventilated for less than/equal to or for more than 8 h (≤ or >). The objective of new work was to apply this adult model to the estimation of ventilation with neonatal ICU (NICU) patient records. The performance obtained with the neonatal patients was comparable to that previously found with the adult database, again as measured in terms of a maximum CCR and a minimum ASE. The effectiveness of using the weight-elimination technique in controlling overfitting was again validated for the neonatal patients as it had been for our adult patients. It was concluded that the approach developed for ICU adult patients was also successfully applied to a different medical environment: neonatal ICU patients.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:6 ,  Issue: 2 )