By Topic

Data augmentation using a combination of independent component analysis and non-linear time-series prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Eltoft, T. ; Dept. of Phys., Tromso Univ.

In this paper we introduce a new method for filling in gaps in a time series belonging to a set of simultaneously recorded, statistically dependent signals. By combining the properties of the independent component analysis (ICA) transform with those of the dynamical-functional artificial neural network (D-FANN), we have developed a data augmentation algorithm that effectively exploits both the temporal history and the mutual dependency between the component signals. This is done by performing the predictions in the ICA-domain, where the signals are expected to maximally independent, whereas the prediction errors, which are used to update the model parameters, are calculated in the observation domain. We have shown that this ICA D-FANN data augmentation algorithm is capable of accurately filling in significant gaps in both synthetic and real time series. Our tests show that the new approach outperforms a predictor based on a standard multilayer perceptron (MLP) network or a predictor based on the finite impulse response (FIR) network, which works separately on the time series components which have missing values

Published in:

Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on  (Volume:1 )

Date of Conference: