By Topic

Chemical sensors based on quantum cascade lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. A. Kosterev ; Rice Quantum Inst., Rice Univ., Houston, TX, USA ; F. K. Tittel

There is an increasing need in many chemical sensing applications ranging from industrial process control to environmental science and medical diagnostics for fast, sensitive, and selective gas detection based on laser spectroscopy. The recent availability of novel pulsed and CW quantum cascade distributed feedback (QC-DFB) lasers as mid-infrared spectroscopic sources address this need. A number of spectroscopic techniques have been demonstrated worldwide by several groups. For example, the authors have employed QC-DFB lasers for the monitoring and quantification of several trace gases and isotopic species in ambient air at ppmv and ppbv levels by means of direct absorption, wavelength modulation, and cavity enhanced and cavity ringdown spectroscopy

Published in:

IEEE Journal of Quantum Electronics  (Volume:38 ,  Issue: 6 )