By Topic

Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
W. X. Shen ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, China ; C. C. Chan ; E. W. C. Lo ; K. T. Chau

This paper proposes and implements a new method for the estimation of the battery residual capacity (BRC) for electric vehicles (EVs). The key of the proposed method is to model the EV battery by using the adaptive neuro-fuzzy inference system. Different operating profiles of the EV battery are investigated including the constant current discharge and the random current discharge as well as the standard EV driving cycles in Europe, the US, and Japan. The estimated BRCs are directly compared with the actual BRCs, verifying the accuracy and effectiveness of the proposed modeling method. Moreover, this method can be easily implemented by a low-cost microcontroller and can readily be extended to the estimation of the BRC for other types of EV batteries

Published in:

IEEE Transactions on Industrial Electronics  (Volume:49 ,  Issue: 3 )