By Topic

A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyeong-Hwa Kim ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Myung-Joong Youn

A nonlinear speed control for a permanent-magnet (PM) synchronous motor using a simple disturbance estimation technique is presented. By using a feedback linearization scheme, the nonlinear motor model can be linearized in the Brunovski canonical form, and the speed controller can be easily designed based on the linearized model. This technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions. An adaptive linearization technique and a sliding-mode control technique have been reported. Although good performance can be obtained, the controller designs are quite complex. To overcome this drawback, the controller parameters are estimated by using a disturbance observer theory where the disturbance torque and flux linkage are estimated. Since only the two reduced-order observers are used for the parameter estimation, the observer designs are considerably simple and the computational load of the controller for parameter estimation is negligibly small. The nonlinear disturbances caused by the incomplete linearization can be effectively compensated by using this control scheme. Thus, a desired dynamic performance and a zero steady-state error can be obtained. The proposed control scheme is implemented on a PM synchronous motor using a digital signal processor (TMS320C31) and the effectiveness is verified through the comparative simulations and experiments

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:49 ,  Issue: 3 )