By Topic

Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ming-Chou Chiang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Shey-Shi Lu ; Meng, C.-C. ; Shih-An Yu
more authors

The realization of matched impedance wide-band amplifiers fabricated by InGaP-GaAs heterojunction bipolar transistor (HBT) process is reported. The technique of multiple feedback loops was used to achieve terminal impedance matching and wide bandwidth simultaneously. The experimental results showed that a small signal gain of 16 dB and a 3-dB bandwidth of 11.6 GHz with in-band input/output return loss less than -10 dB were obtained. These values agreed well with those predicted from the analytic expressions that we derived for voltage gain, transimpedance gain, bandwidth, and input and output impedances. A general method for the determination of frequency responses of input/output return losses (or S11, S22) from the poles of voltage gain was proposed. The intrinsic overdamped characteristic of this amplifier was proved and emitter capacitive peaking was used to remedy this problem. The tradeoff between the input impedance matching and bandwidth was also found

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 6 )