By Topic

A digitally self-calibrating 14-bit 10-MHz CMOS pipelined A/D converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chuang, S.-Y. ; Data Acquisition Div., Texas Instruments Inc., Tucson, AZ, USA ; Sculley, T.L.

A digitally self-calibrating pipelined analog-to-digital converter (ADC) featuring 1.5-bit/stage structure is presented. The integral (INL) and differential nonlinearity (DNL) errors are removed using a novel digital calibration algorithm, which also eliminates missing codes that can occur with other calibration algorithms near the extremes of the input range. After calibration, the measured DNL is ±0.6 LSB and the INL is ±2.5 LSB at the 14-bit level. Sampling at a 10-MHz rate, the chip dissipates 220 mW and (post-calibration) yields a signal-to-noise ratio of 77 dB and a spurious-free dynamic range of 95 dB with 4.8-MHz sine wave input signal. The chip is fabricated in 0.5-μm CMOS double-poly double-metal process, measures 3.8 mm × 3.3 mm (150 mil × 130 mil), and operates from a single 5-V supply

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 6 )