By Topic

Expander graphs for digital stream authentication and robust overlay networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Song, D. ; California Univ., Berkeley, CA, USA ; Zuckerman, D. ; Tygar, J.D.

We use expander graphs to provide efficient new constructions for two security applications: authentication of long digital streams over lossy networks and building scalable, robust overlay networks. Here is a summary of our contributions: (1) To authenticate long digital streams over lossy networks, we provide a construction with a provable lower bound on the ability to authenticate a packet - and that lower bound is independent of the size of the graph. To achieve this, we present an authentication expander graph with constant degree. (Previous work used authentication graphs but required graphs with degree linear in the number of vertices.) (2) To build efficient, robust, and scalable overlay networks, we provide a construction using undirected expander graphs with a provable lower bound on the ability of a broadcast message to successfully reach any receiver. This also gives us a new, more efficient solution to the decentralized certificate revocation problem.

Published in:

Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on

Date of Conference: